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Arrival time of P & S Waves

The arrival times of P and S waves, originating from earthquakes, diverse seismic tests, and events, are crucial
geotechnical parameters. Derived from the inversion of these travel times, Vp (P-wave velocity) and Vg (S-wave
velocity) are pivotal in geotechnical engineering, correlating directly with dynamic soil properties and enabling
calculations of Poisson’s Ratio (v), Young’s modulus (E), Shear modulus (p), and Bulk modulus (B). Both Vp and
Vs are crucial for evaluating soil behaviour under various conditions, aiding in modelling soil for settlement,
wave propagation, seismic wave interaction, liquefaction potential analysis, seismic response analysis, and many
more. The selection of arrival times for seismic tests, including Crosshole, Downhole, and Uphole tests, is done
manually, which is time-consuming and potentially erroneous. To address this issue, various algorithms have
been developed to automate the picking process. Some of these algorithms use wavelet transforms and Bayesian
information criteria, while others use machine learning techniques such as artificial neural networks. These
methods vary in terms of their accuracy, yet each one possesses inherent limitations when it comes to processing
data with different levels of signal-to-noise ratio. The advancement of automated algorithms for determining
arrival times is an ongoing and dynamic field of research. Apart from the existing research focused on deter-
mining the arrival time of P waves, there is a dearth of studies investigating the detection of S wave arrival times.
To fill this gap, this study proposes new approaches for detecting both P and S wave arrival time(s). One
approach entails the utilization of an iterative optimization algorithm to accurately fit a curve to the leading edge
of the P waveform. The arrival time is determined by calculating a fraction relative to the highest point obtained
from the fitted peak. The second approach entails identifying the exact moment of the S wave’s arrival by
determining the points of intersection between the oppositely polarized S waveforms. These methods provide a
promising approach for automatically detecting both P and S wave arrival time(s), which has the potential to
improve the precision and efficiency in picking up arrival time(s).

1. Introduction

The measurement of compressional/primary wave velocities (Vp)
and shear/secondary wave velocities (Vs) through seismic wave tests
such as crosshole, downhole, and uphole tests are crucial in assessing the
dynamic properties of soil. These measurements enable the calculation
of key soil parameters such as Poisson’s Ratio (v), Young’s modulus (E),
Shear modulus (p), and Bulk modulus (B). The comprehensive evalua-
tion of VP & VS supports various geotechnical analyses, including sta-
bility for static and dynamic loads, liquefaction potential, seismic
response, and many more (Kramer, 1996; Hussien and Karray, 2016).
So, accurately detecting the arrival time of recorded P and S waves holds
significant importance in seismic data processing, as it profoundly
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influences the precision of the computed Vp and Vs profile. Manual
picking of the arrival times is time-consuming as well as subjective. The
accuracy also depends on the intensity of zoom and the limitations of the
software being used. Thus, automating the entire procedure will in-
crease the precision, save time and, more importantly, eliminate bias.
Numerous techniques have been introduced in academic research
over the years, employing diverse mathematical models, including but
not limited to surpassing threshold levels, utilizing deep learning tech-
niques, and so on. Zhang et al. (2003) introduced an algorithm capable
of automatically identifying the P-wave arrival by utilizing wavelet
transform and the Akaike Information Criteria (AIC) picker. The AIC
algorithm fails when the Signal to Noise Ratio (SNR) is extremely low.
The AIC algorithm had a picking accuracy of 81% within 0.2 s and 93%
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within 0.1 s of the corresponding analyst pick for the Dead Sea and
Parkfield datasets, respectively, when applied to earthquake data.
However, these results show a significant error compared to more
advanced algorithms that have been developed since the publication of
this research. It was mentioned in the study that the accuracy of the
analyst picks themselves may also be subject to error. Rawles and
Thurber (2015) proposed an innovative technique for detecting P- and
S-wave arrivals automatically. Their approach, based on Nearest
Neighbours, differs from traditional methods that rely on estimating
parameters from the data. Instead, this method leverages the data
directly to establish the model. Erol Kalkan (2016) proposed the
P-PHASE PICKER algorithm, which transforms the seismic signals into
the response domain of a single-degree-of-freedom (SDOF) oscillator
with viscous damping. This transformation tracks dissipated damping
energy, allowing for precisely identifying P-wave arrival times by ana-
lysing significant changes in the damping energy function. The P-PHASE
PICKER has proven highly effective, reducing missed picks caused by
noise from 15.1% (AIC picker) and 7.2% (STA/LTA picker) to just 0.9%.
Erol Kalkan (2024) employed a similar technique for the S-PHASE
PICKER, transforming seismic signals into the response domain of a
single-degree-of-freedom (SDOF) oscillator with a high damping ratio
(60% of critical damping). This method tracks the dissipated damping
energy, which stays near zero before the P-wave and surges rapidly with
the S-wave’s arrival. This rapid build-up is then used to detect the
S-wave onset. Saad et al. (2017) have proposed an approach to detect
the arrival time of earthquakes based on the Fuzzy Possibilistic C-Means
(FPCM) clustering algorithm. The FPCM algorithm is more accurate than
other algorithms like Short-Term-Average (STA)/Long-Term-Average
(LTA) Ratio, Akaike Information Criterion (AIC), and Fuzzy C-Means
Clustering (FCM), but its accuracy is restricted to when the SNR is
greater than —10dB. Saad et al. (2018a) introduced a method for
earthquake onset time detection based on the Modified Laplacian of
Gaussian (MLoG) filter. The MLoG filter incorporates a denoising-filter
algorithm to smoothen the background noise and utilizes a Dual
Threshold Comparator to accurately detect the onset time of the seismic
event. The MLoG algorithm was compared with other algorithms (like
STA/LTA and AIC), but its accuracy, though it increased, is still
restricted to an SNR of —12dB. In contrast to conventional methods,
more advanced techniques leverage deep learning and machine learning
techniques. Saad et al. (2018b) proposed a Stacked Denoising Auto
Encoder (SDAE), a deep learning technique, which acts as a denoising
filter for the seismic data, thus smoothing the background noise. A
threshold is used to detect the onset time of the event. It can detect
arrival times for events when SNR is greater than —14dB. Hara et al.
(2019) developed a machine-learning model that utilizes Convolutional
Neural Networks (CNNs) to accurately determine the arrival time of
P-waves in observed seismic waveforms. The inputs for the model were
determined by human experts. Similarly, Wang et al. (2019) used a
deep-learning method called PickNet to automatically determine the P
and S wave arrival time(s) of local earthquakes. Both the CNN model and
PickNet were trained by humans, which might introduce bias due to
individual differences. Moreover, achieving a high level of accuracy
necessitates the utilization of a substantial volume of training data.
Zhang and Sheng (2020) proposed using the Residual Link Nested U-Net
Network (RLU-Net) and an improved Wasserstein Generative Adversa-
rial Network (WGAN) to pick the first arrival of microseismic signals.
Saad et al. (2021) presented SCALODEEP, a deep learning framework for
real-time earthquake detection that utilizes a sophisticated network
architecture and a scalogram, a time-frequency representation of
earthquake data, to extract high-order features from three-component
seismograms. The model demonstrates superior performance,
achieving high accuracy across diverse datasets: 88.5% (Japanese),
90.7% (Texas), 87.8% (Egyptian), and 79.6% (Arkansas). SCALODEEP
outperforms traditional methods (STA/LTA, FAST, and template
matching) and advanced frameworks like CRED and Earthquake
transformers.
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Picking of the arrival time is used in other disciplines of engineering
and science as well. Zhang et al. (2020) proposed a method based on the
wavelet transform (WT) and Bayesian information criteria (BIC) to
determine the arrival time of the ultrasonic echo signal, which is used for
measuring the ultrasonic wind speed. Sedlak et al. (2008) proposed a
technique to automatically determine the first arrival of acoustic emis-
sion (AE) signals in thin metal plates, which is based on the Akaike In-
formation Criterion (AIC), that uses the specific characteristic function.

The arrival time of seismic waves plays a crucial role in geotechnical
engineering to characterize the properties of soil, as it is used to calcu-
late wave velocities, which in turn provides the values of Poisson ratio
and Modulus at specific levels of strain. This study aims to establish a
mathematical model to accurately detect the arrival times of Primary (P)
and Secondary (S) waves in borehole seismic surveys, which are
currently predominantly determined through manual methods. The
proposed model includes two methods: one for detecting P-wave arrival
times using Iterative Curve Fitting to fit multiple Gaussian curves to
complex peak shapes, with the start point determined by the best-fit
model, and another for detecting S-wave arrival times by identifying
the intersection point of positively and negatively polarized S waves
which demarcates the 180° phase difference between the waves. The
goal of this study is to create a more reliable and consistent method for
detecting wave arrival times for seismic borehole tests, eliminating any
potential human bias in the process.

2. The proposed algorithms

P waves, also known as primary waves or pressure waves, are
characterized by a compressional motion. P wave arrival time is deter-
mined by considering the starting of the first peak or valley. S waves,
also known as secondary or shear waves, are characterized by a shearing
motion - a side-to-side movement. They are slower than P waves, and
their arrival time is determined by several factors, including a significant
increase in amplitude, a decrease in frequency, and most importantly, a
180° phase difference between oppositely polarized waves.

Two methods have been suggested to determine the arrival times of
Primary and Secondary waves, and their details are presented in the
subsequent sections. The algorithms for these techniques have been
implemented in MATLAB, which is a widely adopted commercial pro-
gramming language extensively employed in the fields of engineering
and science.

2.1. Primary (P) Wave

Selecting the arrival time, specifically the onset of the initial peak,
for P-Waves can be subjective since the shapes of the peaks tend to
gradually approach the baseline without intersecting it. This can be
solved by using a simple threshold detection to determine the first
arrival of the generated waveforms, i.e., the arrival time will be a value
in the time domain when the amplitude reaches a small fraction of the
peak amplitude. One drawback of this approach is that the random noise
present in the baseline can often be a significant portion of the amplitude
at that specific point. As a result, this compromises the accuracy of the
measurement and makes it useless. Various strategies can be adopted to
overcome this, such as Smoothing or Fitting each peak to a model shape,
but in our case, these are not very effective. Smoothing can reduce the
noise, but it will distort and broaden the peaks (especially with over-
lapping peaks), effectively changing their start and endpoints. Fitting
each peak to a specific mathematical model, such as a Gaussian or
Lorentzian shape, can effectively reduce noise in the data. However, this
approach requires having an analytical peak model that accurately
represents the data, which is often not feasible. An alternative and more
robust method is to iteratively fit a model to the peak data. In the case of
complex peak shapes, the model can be constructed by combining
multiple simpler shapes, such as Gaussians. The start point can be
determined with surprising precision because it is calculated based on
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12 Measurement of peak start and stop points by curve fitting
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Fig. 1. Measurement of peak start and end points by curve fitting (Modified
from O’Haver).
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Fig. 3. Calculated P-Wave arrival time.
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the best-fit model, which averages out the noise over the entire signal.
This iterative curve fitting approach provides a more reliable way to
analyze complex peaks and minimize the impact of noise. Here, the cut-
off amplitude (or the threshold) is considered as 1% of the peak height.
In a nutshell, we propose the use of the Iterative Curve Fitting technique
to fit two or more Gaussian curves (where the complex peak shape is the
sum of those curves).

2.1.1. Iterative curve fitting of Gaussian curves

Gaussian functions can describe many scientific and mathematical
processes. The fitting of Gaussian functions has been used widely in
signal processing. A Gaussian function (or simply Gaussian) can be

expressed as.
2

flx) = Ae% where A, u, and 6 (6 # 0) are arbitrary real
constants.

The graph of a Gaussian function turns out to be ‘bell shaped” where
the parameter "A’ represents the height of the peak, the parameter 'y’
represents the center of the peak, and the parameter ’6’ controls the
width of the curve.

A straightforward and efficient approach to fitting a curve involves
utilizing the method of linear least squares, wherein the dependent
variable can be represented by a polynomial with linear coefficients.
Caruana et al. (1986) proposed a simpler method (known as Caruana’s
Algorithm) of coordinate transformation for the Gaussian function by
taking the natural logarithm on both sides.

2

In(y) =In(A) + 77("2 ;2”) o))
2 2
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=a+ bx + cx? 3)

The non-linear equation involving unknowns A, p and o is converted
into a linear equation involving unknowns a, b, and c. Caruana’s algo-
rithm is computationally efficient since it does not require iteration.
However, its accuracy significantly decreases when noise is present.
Additionally, the transformation of the non-linear function into log-log
space alters the distribution of errors in the data.

The Iterative Curve Fitting Method employs a trial-and-error
approach, wherein the model parameters are systematically adjusted
until the equation closely matches the given data. This iterative process
continues until the desired level of fit is achieved.

Firstly, a model is considered for the data (Gaussian for our case),
and then a first guess is made for the non-linear parameters (position and
width of overlapping peaks). The parameters are continuously adjusted
until the desired fitting accuracy is attained or the maximum number of
iterations is reached.

In our MATLAB implementation, users load signal data and select a
region near the first peak using an interactive rectangular resizable re-
gion selector. The P-wave arrival time determination involves a 1%
threshold of the maximum height of the total model. This threshold
remains consistent irrespective of the selected region’s size. Subse-
quently, the chosen peak undergoes precise iterative fitting with three
Gaussian curves, enabling an accurate determination of the arrival time.
The iterative fitting process employs a non-linear optimization algo-
rithm to decompose complex, overlapping-peak signals into their
component parts. Gaussian model parameters are iteratively adjusted to
minimize disparities between the model’s predictions and observed
experimental data, ensuring convergence. This iterative approach en-
sures adaptability to data intricacies, such as noise or complex peak
shapes, accurately representing the underlying trend.

Fig. 1 illustrates the measurement of peak start and stop points using
the iterative curve fitting process with two overlapping Gaussian func-
tions, which are shown as dashed lines in the plot. The cut-off point is
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Fig. 4. Linear Bézier curve, t € [0,1].
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Fig. 6. Marked intersection points over the entire waveform.

defined as 1% of the peak height, and random white noise has been
added to the data set. The dash-dotted line and the dotted line represent
the start and end points, respectively. The plot in Fig. 2 shows the fitted
peak of a sample wave, and the corresponding residual plot demon-
strates that the model is a good fit to the data. This is further reinforced
by the strong R? value of 0.99999, suggesting that the model accounts
for a significant amount of the variability observed in the data. The
randomness of the residuals suggests that the model is capturing the
underlying trend in the data accurately. Fig. 3 illustrates the marked
arrival time calculated from the algorithm for a sample wave.

2.2. Secondary (S) Wave

Conventionally, shear wave arrivals are estimated by overlapping
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two seismic traces of alternating strikes and identifying the beginning of
a ’bow’, which is a result of the 180° phase difference between two
shots. As mentioned by Mok et al. (2016), the onset of the butterfly (or
the bow) pattern marks the arrival time of the shear wave signals
generated by reversing impact. The points where intersections occur
distinctly depict the butterfly or bow pattern. We are considering the
intersection point (may or may not be the first one) of the positively and
negatively polarised S waves as the arrival time. As discussed earlier,
manually selecting those points might give varying results based on the
user and the intensity of zoom.

2.2.1. Intersection points

A straight line with two distinct points Py and P; and can be repre-
sented as B(t) = Py + t(Py — P1) = (1 — t)Py + tP;, where t is the linear
Bezier parameter, which represents the distance from the starting point
with 0 <t <1 and this form is known as the Linear Bezier Curve. This
form is equivalent to Linear Interpolation. Fig. 4 depicts a linear Bezier
curve with the indicated parameters.

If two-line segments L; and L, are given with endpoints: x1,y1 & X2,
y» for Ly, and x3,y3 & X4,Yy4 for Ly, as shown in Fig. 5.

Let’s consider the point of intersection between two-line segments,
L; and Ly, as (xo,Yo). The parameter t; represents the distance from the
starting point of L, to the intersection point, relative to the length of L;.
Similarly, the parameter t, represents the distance from the starting
point of L, to the intersection point, relative to the length of L,.

Thus, we can write four equations as

Xo=X1 + t1 (X2 —X1) @
Xo = X3 + ta(Xq — X3) (5)
Yo=y1+t(2-y) (6)
Yo=Ys +t2(ya—ys3) (@]

When rearranged and expressed in matrix form, the given expression
can be rewritten as follows:

X2 — X7 0 -1 0 t —X1
0 Xs—x3 —1 0 ty —X3
= 8
Y2—0 0 0o -1 x Xo -y ®
0 Ya—ys 0 -1 Yo Y3

The given system of linear equations can be represented as A x T =
B. Therefore, to solve for the variable T, we can express itas T = A™'B,

5] X2 — X1 0 -1 0 —X1
where T = | & LA = 0 Xa—xs —1 01 qp— |
Xo Y2—)1 0 0 -1 Y1
Yo 0 Ya—ys 0 -1 -3

The matrix T represents the parameters needed to describe the
intersection point between two-line segments L; and Ly, denoted as (xo,
Yo), along with the parameters t; and t,. Upon restricting t;,t; € [0,1],
the intersection point lies within the line segments L; and L,. By con-
structing matrices A and B from the endpoint coordinates of the two
lines L1 and L,, and then solving the equation T = A~!B, we can
determine the parameters describing the intersection point between the
two-line segments, i.e., xg,Yo-

The MATLAB implementation for S-wave arrival time detection in-
volves loading recorded signal data, including one positively and one
negatively polarized wave. Given the discrete nature of the recorded
wave(s), the algorithm interprets the relationship between consecutive
data points as a linear Bézier curve. It systematically solves the system of
linear equations (Equations (4)—(8)) for each pair of adjacent data
points, deriving Bézier parameters that define the intersection point.

In constructing the matrices for solving the system of linear equa-
tions, matrix A comprises coefficients derived from the coordinates of
the two adjacent points. Matrix T is a column vector containing the
unknown Bézier parameters and the intersection coordinates, while
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Fig. 7. Calculated S-Wave arrival time.

matrix B holds the constant terms on the right-hand side of the equa-
tions. The equation A x T = B concisely summarizes this relationship,
and this approach is systematically applied to cover the entire signal.
A critical validity check is employed to ensure that these parameters
fall within the range of 0-1, signifying a valid intersection. These
intersection points represent instances of a 180-degree polarity differ-
ence. With the calculated intersection points between oppositely
polarized waveforms, a predefined threshold is applied to identify the
arrival time at the first bow, marked by a substantial increase in
waveform amplitude. Alternatively, the user can also interactively
pinpoint this juncture for arrival time selection, providing a more
consistent and mathematically calculated alternative to manual
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selection by zooming into the wave. This meticulous mathematical
procedure robustly identifies intersection points, significantly
enhancing the precision of S-wave arrival time determination.

Figs. 6 and 7 show the entire waveform with the marked in-
tersections and the marked arrival time, respectively. The intersection
points are highlighted along the entire waveform in Fig. 6.

A set of experimental data is analyzed using these methods, which
includes estimated arrival time and determination of Vp and Vs values.
These results are then compared with the conventional manual pick-up
time and the estimated Vp and Vs values in the subsequent section.

3. Field survey

Crosshole, Downhole, and Uphole tests are geophysical techniques

Fig. 9. Field setup for crosshole seismic testing at IISc, Bangalore.
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Fig. 8. Schematic illustration of crosshole seismic testing.
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Fig. 10. Multi-Channel Representation of Crosshole Seismic Waves recorded by
BGK-7 (a) P — Waves (b) S — Waves (both positively and negatively recor-
ded waves).

used to measure the properties of subsurface materials. Crosshole tests
involve sensors in two boreholes, downhole tests use sensors in a single
borehole, and uphole tests use sensors on the surface. Vibrations are
induced in the subsurface material for crosshole and uphole tests using
impact inside the borehole, and for downhole tests using impact at the
surface.

A crosshole test was conducted at the Department of Civil Engi-
neering, Indian Institute of Science (IISc) in Bangalore, using a BIS-SH
Crosshole source and a BGK-7 geophone, both manufactured by Geo-
tomographie GmbH. The test reached a depth of 15 m with an interval of
1 m. Fig. 8 presents a visual schematic illustration of the experimental
setup used in the testing process. The illustration showcases the com-
ponents of the testing process, including the boreholes, geophones, and
energy source, as well as the direction of wave propagation. Fig. 9 de-
picts the typical field arrangement and setup used for crosshole seismic
testing conducted at IISc.

The BGK-7 geophone has seven active channels - six in the horizontal
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Comparison of P-Wave Velocity Profiles: Manual Picking vs. Proposed Algorithm
Primary Wave Velocity (m/s)
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Fig. 11. Comparison of (a) Vp & (b) Vg profile.

direction and one in the vertical direction - which can record data
simultaneously. The first channel of the geophone was aligned in the
direction of the source borehole, and P-waves were recorded when hit in
the forward direction. Two oppositely polarized hits were made in the
transverse directions, and the resulting S-waves were recorded in the
fourth channel.

Fig. 10 displays the visual representation of the recorded waves from
the seven channels of the geophone during the crosshole seismic test, at
a depth of 6 m. Based on the spatial distribution of the sensors, the
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arrival times of P-waves were determined by utilizing data from the first
channel, whereas the arrival times of S-waves were determined based on
the waveform obtained from the fourth channel. This is due to the fact
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the least amount of interference from other waves or noise. The use of
these channels, which were directly aligned with the direction of the
wavefront, improved the accuracy of arrival time estimation. It should
be noted that while arrival times varied between all channels, the
channel in the same direction as the wavefront provided the most ac-
curate results.

The proposed algorithms were employed to determine the arrival
times of the waves. The horizontal distance between the boreholes on the
surface is 3.05 m. To refine the accuracy of measurements, the corrected
distance at each depth was calculated following the procedures outlined
in ASTM D4428 (Standard Test Methods for Crosshole Seismic Testing),
incorporating data obtained from the Borehole Deviation Survey. This
correction ensures that the recorded distances align with the true sub-
surface distances, contributing to the precision of subsequent velocity
calculations and the construction of reliable P-wave and S-wave velocity
profiles. The velocities (Vp and Vs) are computed using the corrected
distances and the corresponding arrival times at each depth using the
relation Velocity(V) = Corrected Distance (L) / Arrival Time(t) ,where V
represents either P-wave (Vp) or S-wave (Vg) velocity. These calculated
velocities can help identify lithological variations, distinguish between
different rock types, estimate the dynamic properties, and much more.

Subsequently, a comparison was made between the resulting P-wave
and S-wave velocity profiles and those obtained through manual picking
of the arrival time(s).

Fig. 11 illustrates the velocities calculated from both the conven-
tional manual technique and the proposed algorithm. It can be observed
that the velocities (P and S wave) estimated from the algorithm are very
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close to the ones made manually. But at a few depths, there are signif-
icant differences. This variability is due to the inherent inconsistency of
manual picks, as well as the influence of human bias. It can be noted here
that manual wave pick-up was done by experienced research students
using these test data for more than a year. The effectiveness of the
proposed approach in handling noisy data and accommodating users
with varying levels of expertise in seismic borehole testing will be dis-
cussed in the following sections.

4. Evaluating the accuracy of the proposed algorithms

To assess the accuracy of the proposed algorithms for detecting the
arrival time of P and S waves, the human bias in arrival time picks was
assessed by comparing the predicted arrival time to a set of manual
picks, and its reliability and performance were evaluated with
decreasing signal-to-noise ratios.
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4.1. Robustness of the proposed algorithms

The performance of the algorithms was evaluated by subjecting them
to varying signal-to-noise ratios by applying white noise to recorded
waveforms. White noise is a type of random noise that has a flat fre-
quency spectrum. In other words, white noise contains equal amounts of
energy at all frequencies within a given range.

4.1.1. Primary waves

A downhole waveform with a signal-to-noise ratio of —1.6214 dBc
(decibels relative to the carrier) was selected and subjected to randomly
generated white noise such that the SNRs range from 10 dB to —20 dB.
The results show that the proposed algorithm was able to evaluate the
arrival time with a fair level of precision, despite the decreasing R?
value. The maximum difference in arrival time when compared to the
original waveform was just 1.14 ms. It is possible to estimate the arrival
time of a wave with high precision, even if the signal-to-noise ratio is
low, as long as the shape of the first peak is clearly evident. Fig. 12
demonstrates the relationship between the SNR and the Arrival Time
and R? values. The arrival time values remain relatively constant as the
SNR decreases, while the R? values decrease as the SNR decreases.

Fig. 13(a)—(d) illustrates the marked arrival time for the original
waveform and waveforms with added white noise at SNR levels of 10 dB,
0dB, and —15dB. It can be observed that, even as the waveform becomes
increasingly disrupted with decreasing SNR, the prediction of the arrival
time remains accurate.

To further validate our proposed P-wave arrival time detection al-
gorithm, we conducted a comprehensive comparative analysis with
established methods, including the P-PHASE PICKER by Kalkan (2016)
and SCALODEEP by Saad et al. (2021). Fig. 14 illustrates Bland-Altman
plots used for this assessment, where the central line (mean) signifies
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bias, and the outer lines (+1.96 SD, indicating a 95% confidence in-
terval) represent the limits of agreement. This statistical approach pro-
vides a comprehensive perspective on the consistency and reliability of
each algorithm compared to the others.

The P-PHASE PICKER transforms seismic signals into the response
domain of a single-degree-of-freedom (SDOF) oscillator with a short
natural period and high damping ratio, specifically designed to track
dissipated damping energy. Notably, the damping energy function ex-
hibits significant changes at the onset of the P-wave, enabling precise
identification of the arrival time by analyzing this change. On the other
hand, SCALODEEP is a deep learning framework that processes three-
component seismograms using a scalogram and a deep architecture
with skip connections to extract high-order features from the input data.
It then classifies each time sample as a seismic signal or noise based on
its probability value, allowing it to identify and distinguish earthquake
signals from background noise.

The comparative assessment was applied to crosshole data intro-
duced in Section 3, where arrival times calculated by the P-PHASE
PICKER were compared with those obtained from our algorithm. The
results, depicted in Fig. 14a, indicate a mean difference of —0.0464
when compared to the P-PHASE PICKER, a value remarkably close to
zero. The Limits of Agreement (0.3253 and —0.4182) are relatively
narrow, suggesting minimal systematic bias between our algorithm and
the established P-PHASE PICKER. This emphasizes the consistency and
reliability of our algorithm, showcasing its performance in agreement
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with the existing method.

The P-PHASE PICKER algorithm was then tested for noise robustness,
repeating the same SNR test as mentioned at the start of this section.
While it performed well from 10 dBc to —4 dBec, it failed from —5 dBc to
—20 dBc. In contrast, our proposed algorithm exhibited superior noise
robustness, successfully detecting arrival times even at —20 dBc. This
underscores the effectiveness of our algorithm, surpassing the P-PHASE
PICKER in challenging, low SNR conditions.

In the comparison with SCALODEEP, as illustrated in Fig. 14b, our
algorithm exhibited a mean difference of 3.3801 and relatively wide
limits of agreement, ranging from 9.9061 to —3.3801. Despite the higher

Table 1
Arrival time picks made by the participants.
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mean difference, the consistent differences suggest comparability,
though not in strong agreement. This discrepancy may be influenced by
the difference in training data characteristics, as SCALODEEP was
trained with earthquake data at 100 Hz, while our algorithm used
seismic borehole test data at 8000 Hz. Typically, data from seismic
borehole tests are sampled at higher frequencies, ranging from 1 kHz to
20 kHz, to capture sharper peaks and finer details of these waves for
accurate analysis. This underscores the need for further research tailored
to signals generated during seismic borehole tests. Additionally, Fig. 15
visually compares arrival times calculated by the proposed algorithm, P-
PHASE PICKER, and SCALODEEP across different depths, corroborating
the findings. Notably, the proposed algorithm and P-PHASE PICKER are
closely aligned, while SCALODEEP shows a consistent but distinct dif-
ference from the other two.

4.1.2. Secondary waves

A positively and negatively polarized waveform with signal-to-noise
ratios of 5.1123 and 3.9609 dBc (decibels relative to the carrier),
respectively, were selected and subjected to randomly generated white
noise. The resulting SNR ranged from 10 dB to —15 dB. The proposed
algorithm was able to accurately evaluate the arrival time, with a
maximum difference of 0.8249 ms when compared to the original
waveform. It is possible to estimate the arrival time of a wave with high
precision, even in challenging situations where the signal-to-noise ratio
is low, as long as the high amplitude peaks of the wave are distinctive
and can be easily distinguished from the surrounding noise. As shown in
Fig. 16(a)-(d), the marked arrival time is depicted for the original
waveform and waveforms with added white noise at SNR levels of 10 dB,
0 dB, and —10dB. The prediction of the arrival time remains reliable,
even with the increasing degradation of the waveform at lower SNR
values.

It is important to highlight that interpreting P-wave arrivals shares
similarities between seismic records generated by earthquakes and those
obtained from borehole surveys. However, when it comes to S-waves,
borehole surveys present a unique challenge: two oppositely polarized
waves must be interpreted together, a departure from the approach used
in earthquake records. A thorough literature review reveals a lack of
automated algorithms tailored for seismic borehole records. While
numerous automated algorithms exist for detecting S-wave onsets in
earthquake records, such as the S-PHASE PICKER by Erol Kalkan (2024),
none are specifically designed for borehole surveys. The S-PHASE
PICKER, like the P-PHASE PICKER, converts seismic signals into the
response domain of a Single Degree of Freedom (SDOF) oscillator with
high damping and detects the S-wave arrival when the damping energy

Data File Arrival time from the proposed algorithm (in ms) Arrival Time by manual picking (in ms)

P1 P2 P3 P4 PS5 P1 P2 P3 P4 P5
P - Wave Data Record
1006201 5.61 5.61 5.61 5.61 5.61 5.44 4.58 4.23 5.27 5.46
1006206 6.07 6.07 6.07 6.07 6.07 6.06 5.64 5.57 5.80 6.03
1006212 7.45 7.45 7.45 7.45 7.45 7.23 7.30 6.72 7.40 7.30
1006218 9.28 9.28 9.28 9.28 9.28 8.98 8.81 8.94 8.90 9.43
1006224 11.40 11.40 11.40 11.40 11.40 11.20 10.02 11.09 10.91 11.55
S — Wave Data Record
1006202 & 04 11.02 11.02 11.02 11.02 11.02 11.00 10.98 11.17 11.29 10.98
1006208 & 10 13.06 13.06 13.06 13.06 13.06 13.01 12.91 13.19 12.88 12.96
1006214 & 16 17.15 17.15 17.15 17.15 17.15 15.74 17.02 16.88 15.78 17.21
1006220 & 22 19.07 19.07 19.07 19.07 19.07 18.96 18.83 18.91 10.22 19.06
1006226 & 28 22.64 22.64 22.64 22.64 22.64 22.39 22.57 22.83 22.65 22.45

Note: All the participants used the same computer for the survey, an MSI GF63 Thin Core i5 9th Gen with 8 GB RAM.
P1: An individual with no background in geophysics, but with a good understanding of waves and arrival times.

P2: A newcomer to the field of geophysics, with a good understanding of waves.

P3: An individual with no background in geophysics, but with a decent understanding of waves.
P4: An individual with no background in geophysics and no understanding of waves.
P5: An individual with 5 years of experience in geophysics and expert-level knowledge.
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function changes significantly. A comparison between the proposed al-
gorithm and the S-PHASE PICKER, similar to the P-wave comparison in
section 4.1, shows general agreement but slight bias, due to the latter’s
non-alignment with seismic signals from borehole surveys. The
Bland-Altman Plot in Fig. 17 illustrates this with a mean difference of
0.1502, suggesting a small bias, and moderately wide limits of agree-
ment (—2.7328 to 3.0333), indicating variability between the two al-
gorithms. The absence of extreme outliers suggests reliability and
consistency within the anticipated range. This is further supported by
the arrival times plotted across different depths in Fig. 18 for both the
proposed algorithm and the S-PHASE PICKER. While both methods
largely agree with a small average difference, the moderate variability
highlights the S-PHASE PICKER’s design limitations for borehole sur-
veys, leading to some discrepancies. Our approach introduces a novel
dimension to this field, addressing an aspect that has not been exten-
sively explored in the current body of research.

4.2. The human bias

A survey was conducted to address the issue of human bias in manual
picking. A group of 5 individuals with varying expertise in the subject
matter was chosen and were given an instruction manual on how to use
the software CrossOverPlot (used in manual picking) and the MATLAB
code for the proposed algorithms. The instruction manual contained all
the necessary details for processing the provided data, including the
parameters that are taken into account when selecting the arrival times.

The survey included a set of 5 files containing P and S waves with
varying signal-to-noise ratios (SNRs). The participants were asked to
estimate the arrival times using both the manual technique and the
proposed algorithms for all of the files. Table 1 displays the arrival times
manually selected and proposed by the algorithm for each participant.
The results showed that the manual picks made by the individuals varied
depending on their expertise, while the algorithm consistently produced
the same results. The standard deviation of the manual picks varied from
0.2 to 3.9, which may not seem significant but can create a substantial
error when calculating velocities. In contrast, the standard deviation of
the picks made by the algorithm by the same person is zero. This in-
dicates that the use of the proposed algorithms can reduce human bias in
manual picking, as the results are not influenced by the individual
making the picks. By providing a consistent and objective method for
selecting P and S waves, the algorithm can improve the accuracy and
reliability of data analysis in this field.

5. Conclusion

In geotechnical analysis, the estimated time of arrival of P and S
waves is a very important parameter because it allows for the calculation
of seismic wave velocities, which is essential for seismic site character-
ization. In this study, two new approaches were proposed for automat-
ically detecting the arrival times of P and S waves. These techniques
employ iterative curve fitting and waveform intersection to identify the
timing of P and S waves’ arrivals precisely, respectively. These algo-
rithms are promising because they are based on well-established
mathematical concepts and have been shown to be accurate even with
very low signal-to-noise ratios. Overall, they have the potential to
improve the precision and efficiency of geotechnical seismic borehole
testing and interpretations.
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Computer code availability

The code ‘peakfit.m’ has been developed by Dr. Thomas C. O’Haver
(Professor Emeritus, Department of Chemistry and Biochemistry, Uni-
versity of Maryland at College Park. Email: toh@umd.edu). All other
codes available in the Github repository (https://github.com/Incognito
25/Automatic-Arrival-Time.git) has been developed by Mr. Sauvik
Halder (Department of Civil Engineering, IISc Bangalore. Email: sauvik.
halder98@gmail.com). It is recommended to use MATLAB R2021a, or
higher.
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